A CALCULATION OF THE TEMPERATURE OF CONTACT
SURFACES IN A HIGH-POWER DISCHARGE OF ELECTRIC
CURRENT OF COMMERCIAL FREQUENCY
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Thermal processes occuring at the surface of disconnected electric contacts subjected to
a high-power electric arc are considered,

In [1], it was proposed that a calculation of the thermal behavior of an electrode which is in the form
of a bar can proceed with the following assumptions: the energy input from the arc is uniformly distributed
over the ends of the contact surfaces; the temperature is constant in each cross section, i.e., the one-di-
mensional thermal conductivity equation is a sufficient approximation to the problem. The results of cal-
culations based on these assumptions for a dc arc were given in [1]. In this paper, we explore the possibil -
ity of using this method for an arc produced by a current alternating at commerical frequency.

Let us assume that the energy flowing to the contacts is evenly divided between the anode and cathode.
This assumption is based on the fact that there is litfle difference in the erosion of the cathode and anode
[2, 3]. The density of thermal current incident on the surface of the contact will, therefore, be [4]:

q= U—é{ﬁ‘-lsinwtl. (1)

The cooling of the bars by radiation and thermal exchange with the side surfaces can be neglected to
a first approximation [1, 5]. The initial temperature of the bar is taken to be zero. To solve the basic
thermal conduction equation
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given the indicated boundary and initial conditions |sinwt|, we expand in a Fourier series and retain the
first two terms of the series:
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Using the solution of the basic thermal conduction equation for dc and ac flow to the end surfaces of
the bar [6], we find that the surface temperature is given by
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We introduce the notation
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From curves of 4% = f(t) calculated from Eq. (3) for copper and tungsten (Fig. 1), it is possible to
determine the surface temperature at any instant if the values of Uy, Iy, and S are known. Analysis of
these curves shows that if one starts with the assumption of uniform distribution of thermal flux over the
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Fig. 1. Theoretical felations $* = f(t) (#*, deg-cm?/joule;
t, msec). Mean values of thermal coefficients are used: 1)
tungsten (z = 0.618 cm?/sec, A = 1.67 W/cm - deg); 2) copper
(e = 0.832 cm?/sec, A = 3,18 W/cm -deg).

Fig. 2. Supporting arc spot,

surface of the bar, it is impossible to explain the experimental data concerning the erosion of the contacts.
For example, given a bar diameter 2 cm; a 10 kA current (effective value) and Uy = 15 V, melting point
temperature is attained on the surface of a tungsten electrode within 24 msec (#* = 0.05); if the electrode
were made of copper its melting point would be reached in 14 msec with a TkA current. The extent of ero-
sion should be strongly affected by changes in contact dimensions. However, the contact surface is melted
as a result of heating by the discharge during a single half-period of the current, and the area affects the
results only when it is changed substantially, for example by a transition to a new type of contact [3, 7].

Rapid heating of the contact surfaces to high temperatures can be understood if it is assumed that the
energy passes through an area occupying a small portion of the end faces of the contacts. For further
analysis, we introduce a number of simplifications:

1) thermal energy passes through a circle of radius Ry;
2) inside this circle, the flux is distributed uniformly and there is no thermal flux outside the circle;
3) after reaching a temperature ¢, the supporting arc spot shifts to a different point;

4) since the time 7 during which the supportingarc spot does not move is substantially smaller than
a single half-cycle of the current, the flux will be assumed constant during this period T, The temperature
at the supporting arc surface (Fig. 2) can be determined as a function of this and distance from the center

of the spot r by the source method [6]
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Here ¢ (t, p), the temperature at a point on the surface resulting from the action of a constant point thermal
source of intensity qdS located at a distance p from the point on the surface and acting for a time t, is given

by
2 N p
0 o) = 4ghp [1 (D( 2y at )] ’ ()

pi() is the distance between the supporting arc spot (which is displaced from the center by a distance r)
and the boundary of the spot

pl(cp)zrco§¢+Vr2c052¢+R§—r2. (6)
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Fig. 3. Theoretical relations for
80 1 temperature variation in percent on
2 the surface of the supporting arc
60 J spot (Ry = 0.5 cm; r in cm; temper-
ature of the center of the spot is
w0 taken to be 100%): 1) t = 1; 2) 2; 3)
10 msec.
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We congider certain particular cases.
1) At the center of the spot r = 0, py(¢) = Ry
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For t < 10 msec the expression in the braces can be set equal to unity; the error would not exceed a
fraction of a percent, Then
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Equation (9) agrees with the expression for the temperature of the surface as calculated on the as-
sumption of one-dimensional linear flow.
2) At the boundary of the circle r = R,
p1(p) =R,cosp + | R cos g,
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The value of the integral in the expression (10) is always negative. From (9) and (10), it is clear that
the temperature on the boundary of the arc spot is lower than the temperature at the center by a factor

greater than 2,

The calculations based on (7) showed that this lowering of temperature occurs during the small periods
of time when the arc is at the boundary of the spot (Fig. 3) but for an overwhelming part of the time the tem-
perature does not differ significantly from the temperature at the center. By using these expressions, we
can determine the maximum spot dimensions which will ensure heating of the contact surface Sg, for a time
tg. For this calculation, we use the mean value of thermal current incident on the contact surface. A cer-
tain mean value of 7, determined by Eq. (9), corresponds to this thermal current:
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Further, we assume that the spot travels once over the whole heated surface and that the surface
temperature at the moment when the spot hops onto it is zero, since there is a rapid drop-off of tempera-
ture at the edge of the spot (Fig. 3) and thatthoseparts of the surface onwhich the spothas not yet travelled
are hardly heated at all,

Then
2
— fgﬂRo (12)
g
From (11) and (12), we determine the radius of the spot
0 " ta
Ry = ad, A Sg (13)

Consider a concrete example. According to experimental data, at a contact consisting of a copper
—tungsten of metalloceramic composition, after 10 msec of heating by an arc current of 10 kA, the surface
area subjected to erosion Sg is about 3 cm?. Assume that Q = 150 kW and that the surface temperature is
8300°C, as indicated in [8] for tungsten. Then t = 0.71 msec and Ry = 0.26 cm, If it is assumed that the
circle through which the arc energy is flowing determines the current dengsity at the electrode, then the
latter is found to be equal to 4,7-10%* A/em?. Thus, for sufficiently small spot dimensions, it is possible
to explain the heating of the contact surface during one half-period of the current, not only up to the melt-
ing point, but even to substantially higher temperatures. Of course, these relations allow an evaluation
only of the order of magnitude of these parameters because of the simplifications used in deriving these
quantities.,

In [9], the thermal flux conducted into the interior of the contact from the arc spot was calculated
from the equation for the steady state situation

Q = 4MOR,. (14)

The analysis presented above shows that for processes occurring in a short time under the conditions
outlined above, the temperature distribution is approximately uniform and the use of Eq. (14) is not justi-
fied.

NOTATION

q is the density of heat flux;
Us is a certain total equivalent voltage drop determining the value of energy supplied

to contacts;
Iv is the amplitude value of current;
w is the circular frequency of current;
S is the area;
t is the time;
4 is the temperature;
a is the thermal diffusivity;
A is the thermal conductivity;
&(x) x is the probability integral;
ax) =2/Vr S’e'(’ﬂda;
Q ° is the heat flux;
p is the distance to point heat source;
T is the distance from point to centre of supporting arc spot;
R, is the radius of supporting spot of arc.
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